Effect of parallel surface microgrooves and surface energy on cell growth.

نویسندگان

  • E T den Braber
  • J E de Ruijter
  • H T Smits
  • L A Ginsel
  • A F von Recum
  • J A Jansen
چکیده

To evaluate the effect of surface treatment and surface microtexture on cellular behavior, smooth and microtextured silicone substrata were produced. The microtextured substrata possessed parallel surface grooves with a width and spacing of 2.0 (SilD02), 5.0 (SilD05), and 10 microns (SilD10). The groove depth was approximately 0.5 microns. Subsequently, these substrata were either left untreated (NT) or treated by ultraviolet irradiation (UV), radiofrequency glow discharge treatment (RFGD), or both (UVRFGD). After characterization of the substrata, rat dermal fibroblasts (RDF) were cultured on the UV, RFGD, and UVRFGD treated surfaces for 1, 3, 5, and 7 days. Comparison between the NT and UV substrata revealed that UV treatment did not influence the contact angles and surface energies of surfaces with a similar surface topography. However, the contact angles of the RFGD and UVRFGD substrata were significantly smaller than those of the UV and NT substrata. The dimension of the surface microevents did not influence the wettability characteristics. Cell culture experiments revealed that RDF cell growth on UV-treated surfaces was lower than on the RFGD and UVRFGD substrata. SEM examination demonstrated that the parallel surface grooves on the SilD02 and SilD05 substrata were able to induce stronger cell orientation and alignment than the events on SilD10 surfaces. By combining all of our findings, the most important conclusion was that physicochemical parameters such as wettability and surface free energy influence cell growth but play no measurable role in the shape and orientation of cells on microtextured surfaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of topographical control by a micro-molding process on the activity of human Mesenchymal Stem Cells on alumina ceramics

BACKGROUND Numerous studies have reported that microgrooves on metal and polymer materials can affect cell adhesion, proliferation, differentiation and guidance. However, our knowledge of the cell activity associated with microgrooves on ceramics, such as alumina, zirconia, hydroxyapatite and etc, is very incomplete, owing to difficulties in the engraving of microgrooves on the hard surface of ...

متن کامل

Genetically Engineered Phage Induced Selective H9c2 Cardiomyocytes Patterning in PDMS Microgrooves

A micro-patterned cell adhesive surface was prepared for future design of medical devices. One-dimensional polydimethylsiloxane (PDMS) micro-patterns were prepared by a photolithography process. Afterwards, recombinant filamentous phages that displayed a short binding motif with a cell adhesive peptide (-RGD-) on p8 proteins were immobilized on PDMS microgrooves through simple contact printing ...

متن کامل

Photocured biodegradable polymer substrates of varying stiffness and microgroove dimensions for promoting nerve cell guidance and differentiation.

Photocross-linkable and biodegradable polymers have great promise in fabricating nerve conduits for guiding axonal growth in peripheral nerve regeneration. Here, we photocross-linked two poly(ε-caprolactone) triacrylates (PCLTAs) with number-average molecular weights of ~7000 and ~10,000 g mol(-1) into substrates with parallel microgrooves. Cross-linked PCLTA7k was amorphous and soft, while cro...

متن کامل

Parametric study of the influence of cooling channel dimensions on PEM fuel cell thermal performance

In a polymer membrane fuel cell more than half of the chemical energy of hydrogen is converted to heat during generation of electricity. This causes an increase in the cell temperature. The Cooling field design has a significant role in cell cooling. The cell's performance and stability are reduced due to inappropriate heat dissipation. In this paper, the cooling flow and heat transfer in cooli...

متن کامل

Effects of Surface Viscoelasticity on Cellular Responses of Endothelial Cells

Background: One area of nanoscience deals with nanoscopic interactions between nanostructured materials and biological systems. To elucidate the effects of the substrate surface morphology and viscoelasticity on cell proliferation, fractal analysis was performed on endothelial cells cultured on nanocomposite samples based on silicone rubber (SR) and various concentrations of organomodified nano...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomedical materials research

دوره 29 4  شماره 

صفحات  -

تاریخ انتشار 1995